Predictive Oncology is a clinical and translational data pipeline and AI-driven platform company We apply our smart tumor profiling and AI platform to extensive genomic and biomarker patient data sets to predict clinical outcomes and improve clinical outcomes for the patients of today and tomorrow.

The unmet need in precision medicine

Pharma has invested heavily in genomics and “big data” to understand each patient’s genome to target therapies, yet success rates for targeted therapies are low and uptake in clinical practice is patchy. There is a growing realization now that “just genomics” is not enough and a clear unmet need for a multi-omic approach, which may offer a greater chance of success, but such data is difficult to access quickly. Few comprehensive, multi-omic datasets exist and it is time consuming to initiate prospective data collection especially in cancer.

Answering the need – leveraging the Helomics asset

Predictive Oncology believes it has a solution to Pharma’s need for multi-omic data by leveraging two unique assets form its helomics division.• A clinically validated patient-derived (PDx) tumor profiling platform (TruTumor™) that can generate drug response profiles and other multi-omic data. This platform had over $200M invested and was clinically validated in ovarian cancer. • Data on the drug response profiles of over 150,000 tumors across 137 cancer types tested using the PDx platform in over 10+ years of clinical testing. Helomics is leveraging these assets, using the proven power of AI to build multi-omic predictive models of tumor drug response.

Application of predictive models

Multi-omics models capable of predicting drug response have both research and clinical applications. Predictive Oncology intends to combine these predictive models with its smart tumor profiling platform in clinical and translational research projects with Pharma, BioPharma and Diagnostic companies.

Research Drug Development Clinical Decision Support
Biomarker discovery Patient enrichment Patient stratification
Drug discovery Clinical trial optimization Patient risk assessment
Drug-repurposing Adaptive trials Treatment selection